

TCEQ

Investigation No. 880263 Fiscal Year 2012 DFW Regional Office

ATTACHMENT 7

Alleged Violations and Additional Issues Response Letter

SWR No. 30516 IHW Permit No. 50206 EPA ID No. TXD006451090 RN100218643 CN600129787

Exide Technologies-Frisco

INVESTIGATION: DOROTHY LEWIS
INVESTIGATION DATES: 06/28/2011-06/29/2011

From: "HARDY, Edward (Baton Rouge)" <E

To: Dorothy.Lewis@tceq.texas.gov

Date: 7/27/2011 2:46 PM

Subject: Exide Frisco - Records Request Submittal Via Email

Attachments: Attachment 1.pdf; Attachment 2.pdf; Attachment 3.pdf; Add Records Request Letter to TCEQ 7_27_11.pdf

Dorothy,

Attached are the documents we discussed this morning. The hard copy submittal and accompanying CD will be sent today FEDEX.

Regards,

Edward M. Hardy II

Environmental Manager

Exide Technologies - BRRC/ FRC

Baton Rouge Office:

PO Box 74040

Baton Rouge, LA 70874

2400 Brooklawn Drive

Baton Rouge, LA 70807

Office (225) 775-3040 ext.

Frisco Office: 7471 South 5th St. PO Box 250 Frisco, TX 75034 (972) 335-2121

This message (including any attachments) may contain protected information and is intended only for the individual(s) named. If you are not a named addressee you should not disseminate, distribute or copy this e-mail. If you have received this e-mail in error, please notify sender by e-mail and delete this e-mail.

Exide Technologies Frisco Recycling Center P.O. Box 250 Frisco, TX 75034 Tel (972) 335-2121

Via Electronic Mail and FEDEX

July 27, 2011

Ms. Dorothy Lewis (MC-R04)
Texas Commission on Environmental Quality
Region 4
2309 Gravel Drive
Fort Worth, TX 76118-6951

Re: Exide Technologies

Frisco Battery Recycling Plant

RN100218643

(1) Waste Inspection Records Request and (2) Additional Information in Response to Alleged Violations

Dear Ms. Lewis:

Thank you for the brief extension of time to provide requested records. As requested, we are providing the following electronic records and additional information in response to your requests, which are listed as headings below:

(1) Waste Inspection Records

Satellite Accumulation Areas

No additional records have been located.

Training Records

No additional records have been located.

Slag-Treatment Analytical

• The attached CD contains a folder titled "4. Sample Results," which contains sample results for slag tested both prior to and after treatment.

Slag Tested Hazardous Class 1 or LDR, last 3 years

See enclosed electronic records

(2) Additional Information in Response to Alleged Violations

Additionally, thank you for providing us with the TCEQ Exit Interview Form identifying potential violations arising from your inspection of waste operations at Exide's Frisco Battery Recycling Center. I have reviewed the listed items and would like to provide additional

information on several of the issues you identified as alleged violations. We are continuing to look into the other potential issues you indentified. Some of the issues identified in the Exit Interview are addressed separately below.

• Issue No. 2. Hazardous Waste Determination and Classification on PPE, washdown water, and shrink wrap per SW-846

The original profile and recent characterization of shrink wrap and other packaging demonstrate this waste stream is not and was not in the past a hazardous waste. Although the waste stream is not hazardous, Exide, to be cautious, decided to treat the stream prior to shipment for off-site disposal by stabilization due to the material's exposure to process area dust. The waste stream is non-hazardous both prior to and following this treatment process. Exide recently commissioned an analysis of the material that supports the non-hazardous determination. Attachment 1 is a copy of a report prepared by W&M Environmental Group, Inc. analyzing the shrink wrap and other packaging at the Exide Frisco facility. As the report demonstrates, the waste is not a hazardous waste or a Class I industrial waste, and the waste did not exhibit the characteristics of hazardous waste at the time of the EPA inspection. Thus, Exide is not in violation of any requirement for it to conduct a hazardous waste determination and classification on shrink wrap.

Similarly, Exide is not in violation of any requirement for it to conduct a hazardous waste determination and classification on washdown water, which Exide occasionally generates inside the slag treatment building. The Frisco facility has made extensive efforts to be a high water conservation facility to reduce the use of fresh water from the city utilities. The majority of the washdown water is recycled by being used as makeup water in the slag stabilization process and is never a solid waste, but rather used as an ingredient in the Exide process. Any washdown water not used in the process is routed to the on-site wastewater treatment process and used as process water. Thus, there is no requirement that Exide conduct a hazardous waste determination and classification on the washdown water. Even if the washdown water were a waste subject to RCRA requirements, it would not be a hazardous waste. A single sample of the washdown water was collected on June 30th at the request of TCEQ and the results passed TCLP, see **Attachment 2**.

We are looking further into the potential issues you raised concerning the characterization of PPE wastes generated at the Exide Frisco facility. Reviewing the alleged violations on the TCEQ Exit Interview Form, our understanding is that the alleged violation relates to failure to follow EPA SW 846 for the characterization of PPE using analytical results. The company did not use analytical data to make determination that PPE was non-hazardous or hazardous. Rather the company used process knowledge to make the determination that PPE was hazardous. Therefore, an alleged violation for failure to follow EPA SW 846 is inappropriate.

These alleged violations for shrink wrap, washdown water, and PPE should be dropped.

• Issue No. 6. Two Unauthorized Waste Piles (1 untreated slag and 1 permit required on South Disposal Area)

We disagree with TCEQ's interpretation that our slag pile near the blast furnace is an unpermitted waste storage area. When slag exits our refining kettles, we must let it cool prior to dumping it as it still contains metal in liquid form and must be inspected to determine if there is any lead remaining that must be reprocessed. If so, we reprocess the slag and heels. If not, we move the slag to our slag treatment building. While the slag is cooling, waiting for inspection and/or reprocessing, it is still part of our manufacturing process. It is not a waste at that point and, thus, is not subject to permitting and storage requirements applicable to hazardous wastes. We consider the pile to be a transfer point in our process and do not consider the material in the pile to be a solid waste until the determination is made that it cannot be reprocessed. Moreover, we note that the material does not remain in the pile for any length of time. It is generally reprocessed or moved to the slag treatment building the same day it exits the slag pots, with the greatest time it would stay in the pile being 72 hours. In any event, it certainly is not "stored" greater than 90 days.

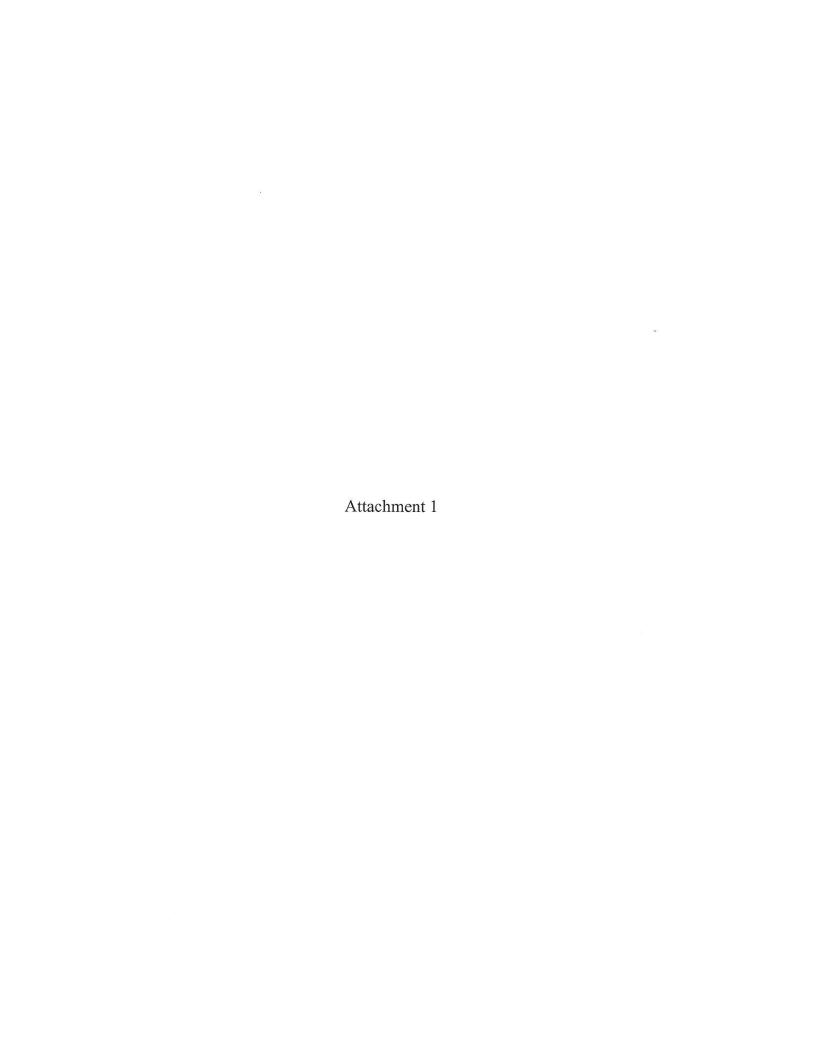
Similarly, we disagree with the allegation that we have an unpermitted storage pile in our South Disposal Area. We agree that there is evidence of slag and battery chips exposed at ground surface in the bunker associated with the old shooting range, and we will address that as part of our ongoing maintenance of the former disposal area and its cover. The bunker itself was not created from materials at the South Disposal Area; rather it was constructed by moving soils from another location on the Exide property. (The smooth contours of the land near the bunker make it evident that we did not create the bunker from materials at the South Disposal area.) The shooting range berm is not a "storage pile" and we cannot be cited as being in violation of permitting rules for storage piles. The existing contours and elevations do show signs of cap erosion due to rainwater. Inspection logs documented that this area was deemed in need of attention; therefore, Exide intends to address the exposed areas through scheduled cover maintenance plan.

These alleged violations for the 2 unauthorized waste piles should be dropped.

Issue No. 15. Disturbing the cover of a closed MSW landfill without authorization

We understand that you were concerned that Exide's treatment staging area might be operating on the old MSW landfill. We have gone back to records (some of them found by reviewing our file at TCEQ) to determine the exact location of the old MSW landfill. Attached as **Attachment 3** are key pages from a 1991 RCRA Facility Investigation that describes the landfill delineations, the testing performed in association with that investigation, and the location of the MSW pile. Our roll-off bins are not located within the landfill perimeter and are not near the MSW portion of the landfill.

This alleged violation should be dropped.


We appreciate the opportunity to provide you with additional information about our waste operations. We are continuing to review our records and will provide you with any other information we may discover regarding the alleged violations cited in the Exit Interview Form. If you have any questions, please contact me at (972) 335-2121 ext. 26 or via email; Edward.hardy@exide.com.

Sincerely,

Edward M. Hardy II

Interim Environmental Manager, FRC

EXIDE TECHNOLOGIES

July 15, 2011

Mr. Edward Hardy Exide Technologies 7471 South 5th Street Frisco, Texas 75034

RE: Summary Letter of Analysis of Cardboard/Shrink Wrap Waste Stream

Exide Technologies Frisco, Texas Facility

W&M Project No. 112.055

Dear Mr. Hardy:

W&M Environmental Group, Inc. (W&M) performed sampling of cardboard and shrink wrap generated during receipt of incoming lead-acid batteries for recycling. Exide Technologies Frisco (Exide) requested W&M's assistance in sampling this waste stream for purposes of determining if it meets the Environmental Protection Agency's (EPA) definition of hazardous waste contained in its regulations for the identification and listing of hazardous wastes.

WASTE GENERATION PROCESS

Exide receives lead-acid batteries into its facility for recycling. Batteries are typically received on pallets, with several layers of batteries on one pallet, each layer is separated by a sheet of cardboard and wrapped with plastic shrink wrap (plastic) (see Photos 1 and 2). Throughout the work shift, the batteries are moved from the pallets to the appropriate operational area for recycling. As the batteries are removed, the cardboard and plastic is removed and placed into a baler (Photo 3). After being baled, the material is disposed. Approximately 25 to 35 pallets are typically processed per hour and there are 1 to 2 bales generated from this material per day.

SAMPLING PLAN

According to EPA's publication SW-846, entitled Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Chapter 9 entitled Sampling Plan, (SW-846) waste identification and listing of hazardous wastes requires that samples collected of solid wastes for analytical testing be "representative" and should exhibit average properties of the whole waste. In addition, enough samples (but in no case less than four samples) should be collected over a period of time sufficient to represent the variability of the wastes. The appropriate number of samples is the least number of samples required to generate a sufficiently precise estimate of the true mean (μ) concentration of a chemical contaminant of a waste. Or, the minimal number of samples needed to demonstrate that the upper limit of the confidence interval (CI) for μ is less than the applicable regulatory threshold (RT). If little or no information is available concerning the distribution of chemical contaminants of a waste, simple random sampling is the most appropriate sampling strategy.

In order to meet the criteria specified above, W&M conducted a Site visit to interview applicable personnel about the generation of the waste stream, including process and generation rate, and concluded that the minimum number of samples that is required by EPA to exclude wastes from being listed as hazardous wastes, that number being at least four, would generate a sufficiently precise estimate of the

www.wh-m.con

Mr. Edward Hardy July 15, 2011 Page 2

true mean. Furthermore, W&M determined that systematic sampling over a period of three to four hours would enable a total of at least four samples be collected from a set of pallets representative of those received from a variety of sources (i.e., received from multiple trucks and/or multiple locations), therefore sufficiently representing the variability of the wastes.

SAMPLING EVENT

W&M collected samples at the point of generation, as the pallets were processed, and prior to being placed into the baler. Samples were collected from a total of 5 pallets during the day shift over a period of about three hours. During the period of collection, approximately 40 to 50 pallets were processed. It should be noted that the processing time per pallet was slower than normal due to the sampling that was taking place.

W&M collected samples from approximately every 10th pallet. Strips of cardboard were collected from each layer within the pallet and strips of plastic were collected from various areas that had been in contact with the batteries. The ratio of cardboard to plastic collected was approximately 80/20, representative of the quantity present on each pallet (i.e., each pallet contained approximately 80% cardboard and 20% plastic, by volume). Each sample collected was representative of one pallet (see Photos 4 and 5).

SAMPLING RESULTS

The five waste samples were each analyzed for metals, including antimony, arsenic, barium, cadmium, chromium, lead, nickel, selenium, and silver in accordance with EPA Method 6020 and for mercury in accordance with EPA Method 7470A. Prior to analysis, each sample was prepared in accordance with the toxic characteristic leaching procedure (TCLP) - EPA method 1311. The sampling results are presented in Table 1 and the complete laboratory analytical package is presented in Appendix B.

Barium was detected in each of the five samples in concentrations ranging from 0.219 to 0.302 milligrams per liter (mg/l). Lead was detected in four of the five samples, in concentrations ranging from 0.059 to 0.249 mg/l. Chromium was detected in one of the five samples at a concentration of 0.151 mg/l and nickel was detected in one of the five samples at a concentration of 0.258 mg/l. Antimony, arsenic, cadmium, selenium, silver and mercury were not detected in the samples above the laboratory's sample quantitation limit (SQL).

W&M used the equations and methodology contained in Table 9-1 of SW-846 to evaluate the data (Appendix C). The mean values of the sampling results were calculated and were not found to exceed applicable RTs. Furthermore, the mean values calculated are greater than the variance and therefore the raw data are not characterized by obvious abnormality. Calculations are shown in Table 2.

The confidence levels and associated upper limits were calculated and compared to the RTs, of which, none were exceeded. Therefore, the chemical contaminants are not considered to be present in the waste at a concentration exceeding the hazardous waste RT. Additionally, the chemical contaminants are not considered to be present in the waste at a concentration exceeding the TCEQ Class I non-hazardous waste RT.

W&M reviewed analytical data from samples of the cardboard and plastic waste stream collected by Exide in February 2010, which is presented in Table 3. Using the same equations and methodology to evaluate this data, the mean values of the sampling results were calculated and not found to exceed applicable RTs. The mean value for Sample SWCB020110-05 is much less than the variance which indicates some data abnormality. Calculations are shown in Table 4. W&M did not combine data collected in 2010 by Exide with its data due to the uncertainty in sample strategy and collection

Mr. Edward Hardy July 15, 2011 Page 3

methodology. Furthermore, it is the understanding of W&M that the 2010 samples were collected after the material had been baled and stored for some period of time as opposed to the point of generation.

SUMMARY AND CONCLUSIONS

Based on the analytical results and subsequent review of the data for samples collected by W&M on June 29, 2011, it is the opinion of W&M that the chemical contaminants analyzed are not considered to be present in the waste in hazardous or Class I non-hazardous concentrations. Furthermore, after review of historical data provided to W&M by Exide, it is the opinion of W&M that the raw data for samples collected on February 2, 2010 exhibited some abnormality and did not necessarily indicate the waste stream contained chemical contaminants in hazardous concentrations.

W&M appreciates the opportunity to be of service to you on this project. If you have any questions or need additional information, please feel free to contact us.

Very truly yours,

W&M ENVIRONMENTAL GROUP, INC.

Lou L. Siegelman

Lori Siegelman, CHMM Senior Consultant

TABLES

TABLE 1 CARDBOARD/PLASTIC WASTE ANALYTICAL RESULTS

Exide Technologies 7471 South 5th Street Frisco, Texas

Metals Analytical Results ¹ (mg/l)											
Constituent	RCRA Regulatory Threshold for Hazardous Waste	TCEQ Regulatory Threshold for Class 1 Non-hazardous Waste	Pallet-01	Pallet-02	Pallet-03	Pallet-04	Pallet-05				
Antimony	N/A	1.0	<0.050	<0.050	<0.050	<0.050	<0.050				
Arsenic	5.0	1.8	<0.050	<0.050	<0.050	<0.050	<0.050				
Barium	100	100	0.219	0.266	0.220	0.225	0.302				
Cadmium	1.0	0.5	<0.010	<0.010	<0.010	<0.010	<0.010				
Chromium	5.0	5.0	0.151	<0.050	<0.050	<0.050	< 0.050				
Lead	5.0	1.5	0.203	<0.050	0.103	0.249	0.059				
Nickel	N/A	70	0.258	<0.050	<0.050	<0.050	<0.050				
Selenium	1.0	1.0	<0.050	<0.050	<0.050	<0.050	<0.050				
Silver	5.0	5.0	< 0.010	<0.010	<0.010	<0.010	< 0.010				
Mercury	0.2	0.2	<0.001	<0.001	<0.001	<0.001	<0.001				

Notes:

Samples collected by W&M on 6/29/11 and analyzed by Oxidor Laboratories, LLC

EPA Method 6020

²Mercury, EPA Method 7470A

<### Indicates concentrations less than the laboratory SQL.</p>

N/A - Not Applicable

TABLE 2 CALCULATIONS OF MEAN AND STATISTICAL VARIABLILITY

Exide Technologies 7471 South 5th Street Frisco, Texas

Constituent	Pallet-01	Pallet-02	Pallet-03	Pallet-04	Pallet-05	Mean (equation 2b)	Variance (equation 3a)	Standard Deviation (equation 4)	Standard Error (equation 5)	Confidence Interval (equation 6)	Upper Limit
Antimony	0.05	0.05	0.05	0.05	0.05	0.050	0.000	0.000	0.000	0.000	0.050
Arsenic	0.05	0.05	0.05	0.05	0.05	0.050	0.000	0.000	0.000	0.000	0.050
Barium	0.219	0.266	0.220	0.225	0.302	0.246	0.001	0.037	0.016	0.025	0.272
Cadmium	0.01	0.01	0.01	0.01	0.01	0.010	0.000	0.000	0.000	0.000	0.010
Chromium	0.151	0.05	0.05	0.05	0.05	0.070	0.002	0.045	0.020	0.031	0.101
Lead	0.203	0.050	0.103	0.249	0.059	0.133	0.008	0.089	0.040	0.061	0.194
Nickel	0.258	0.05	0.05	0.05	0.05	0.092	0.009	0.093	0.042	0.064	0.155
Selenium	0.05	0.05	0.05	0.05	0.05	0.050	0.000	0.000	0.000	0.000	0.050
Silver	0.01	0.01	0.01	0.01	0.01	0.010	0.000	0.000	0.000	0.000	0.010
Mercury	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.001
											·

TABLE 3 CARDBOARD/PLASTIC WASTE ANALYTICAL RESULTS

Exide Technologies 7471 South 5th Street Frisco, Texas

	Metals Analytical Results ¹ (mg/l)											
Constituent	RCRA TCLP Extract Concentration Limit	TCEQ Regulatory Threshold for Class 1 Non-hazardous Waste	SWCB020110-02	SWCB020110-03	SWCB020110-04	SWCB020110-05	SWCB020110-06					
Antimony	1.0	1.0	0.060	0.073	<0.05	<0.050	< 0.050					
Arsenic	5.0	1.8	0.092	0.050	<0.050	<0.050	<0.050					
Barium	100	100	0.111	0.058	0.204	0.317	0.183					
Cadmium	1.0	0.5	0.044	<0.01	<0.01	0.015	<0.01					
Chromium	5.0	5.0	<0.050	<0.050	<0.050	<0.050	<0.050					
Lead	5.0	1.5	0.050	0.050	1.370	5.720	0.082					
Nickel	70	70	0.114	0.079	<0.050	0.068	<0.050					
Selenium	1.0	1.0	<0.050	<0.050	<0.050	<0.050	<0.050					
Silver	5.0	5.0	<0.010	<0.010	<0.010	<0.010	<0.010					
Mercury	0.2	0.2	<0.001	<0.001	<0.001	<0.001	<0.001					

Notes:

Samples collected by Exide on 2/21/10 and analyzed by Oxidor Laboratories, LLC

EPA Method 6020

²Mercury, EPA Method 7470A

^{###} Indicates concentrations less than the laboratory SQL.

TABLE 4 CALCULATIONS OF MEAN AND STATISTICAL VARIABLILITY

Exide Technologies 7471 South 5th Street Frisco, Texas

Constituent	SWCB02 0110-01	SWCB02 0110-02	SWCB02 0110-03	SWCB02 0110-04	SWCB02 0110-05	SWCB02 0110-06		Variance (equation 3a)	Standard Deviation (equation 4)	Standard Error (equation 5)	Confidence Interval (equation 6)	Upper Limit
Antimony	0.05	0.06	0.073	0.05	0.05	0.05	0.057	0.000	0.009	0.004	0.006	0.083
Arsenic	0.05	0.092	0.05	0.05	0.05	0.05	0.058	0.000	0.017	0.008	0.012	0.070
Barium	0.329	0.111	0.058	0.204	0.317	0.183	0.204	0.012	0.108	0.048	0.074	0.278
Cadmium	0.01	0.044	0.01	0.01	0.015	0.01	0.018	0.000	0.014	0.006	0.009	0.027
Chromium	0.05	0.05	0.05	0.05	0.05	0.05	0.050	0.000	0.000	0.000	0.000	0.050
Lead	2.95	0.05	0.05	1.37	5.72	0.082	2.028	5.179	2.276	1.018	1.560	3.588
Nickel	0.05	0.114	0.079	0.05	0.068	0.05	0.072	0.001	0.025	0.011	0.017	0.090
Selenium	0.05	0.05	0.05	0.05	0.05	0.05	0.050	0.000	0.000	0.000	0.000	0.050
Silver	0.01	0.01	0.01	0.01	0.01	0.01	0.010	0.000	0.000	0.000	0.000	0.010
Mercury	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.001

PHOTO LOG

APPENDIX A

Photo 1: Pallets of batteries as received by Exide, prior to processing.

Photo 2: Close up view of a pallet containing batteries as received by Exide, prior to processing.

Appendix A Photographic Log 7471 East 5th Street Frisco, Texas

07-14-11

Waste Analysis and Characterization

W&M Project No.: 112.055

Photo 3: View of baler with plastic and cardboard.

Photo 4: View of cardboard and plastic removed from a single pallet.

Photo 5: View of fifth sample collected.

Appendix A Photographic Log 7471 East 5th Street Frisco, Texas

07-14-11

Waste Analysis and Characterization

W&M Project No.: 112.055

LABORATORY ANALYTICAL DATA

APPENDIX B

Order ID: 11060658 Date: 7/8/2011 Page 1 of 13

Friday, July 08, 2011

W&M Environmental Group, Inc.

Lori Siegelman

906 E. 18th, Suite 100

Plano, TX 75074

Tel: (972) 516-0300 Fax: (972) 516-4145

Re: Project Name: Exide Characterization

Project Number: 112.055 Project Location: Frisco, TX

Oxidor received 5 solid sample(s). The analysis performed were as follows:

Sample	Sample ID	Matrix	Collected	Analysis
11060658-001	Palet-01	Solid	6/29/2011 10:20	TCLP Antimony, TCLP Arsenic, TCLP Barlum, TCLP Cadmium, TCLP Chromium, TCLP Lead, TCLP Mercury, TCLP Metals Extraction, TCLP Nickel, TCLP Selenium, TCLP Silver
11060658-002	Pallet-02	Sold	6/29/2011 11:04	TCLP Antimony, TCLP Arsenic, TCLP Barlum, TCLP Cadmium, TCLP Chromium, TCLP Lead, TCLP Mercury, TCLP Metals Extraction, TCLP Nickel, TCLP Selenium, TCLP Silver
11060658-003	Pallet-03	Sold	6/29/2011 11:38	TCLP Antimony, TCLP Arsenic, TCLP Barlum, TCLP Cadmium, TCLP Chromium, TCLP Lead, TCLP Mercury, TCLP Metals Extraction, TCLP Nickel, TCLP Selenium, TCLP Silver
11060658-004	Pallet-04	Sold	6/29/2011 12:17	TCLP Antimony, TCLP Arsenic, TCLP Barlum, TCLP Cadmium, TCLP Chromium, TCLP Lead, TCLP Mercury, TCLP Metals Extraction, TCLP Nickel, TCLP Selenium, TCLP Silver
11060658-005	Pallet-05	Sold	6/29/2011 12:56	TCLP Antimony, TCLP Arsenic, TCLP Barlum, TCLP Cadmium, TCLP Chromium, TCLP Lead, TCLP Mercury, TCLP Metals Extraction, TCLP Nickel, TCLP Selenium, TCLP Silver

Respectfully submitted,

Charles Brungardt

President

Order ID: 11060658 Date: 7/8/2011 Page 2 of 13

W&M Environmental Group, Inc. Lori Siegelman

Analytical Report

Project Name: Exide Characterization

Customer Sample ID: Pallet-01

Oxidor Sample ID: 11060658-001 Matrix: Solid

Sample Received: 6/29/2011 Sample Collected: 6/29/2011 10:20

Jumpic Mood	Sample Necolved. 0/25/2011			Jann	pic collected. W	Zaizulli	7.20	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Sample Prep								
TCLP Metals Extrac	ction							
TCLP Extraction					06/30/11 16:00	1311	D.C.	
Metals								
Digested by method 3005A on 0	77/01/11 at 10:45							
TCLP Antimony	0.05	0.050	ND	mg/L	07/01/11 20:33	6020	D.D.	
TCLP Arsenic	0.05	0.050	ND	mg/L	07/01/11 20:33	6020	D.D.	
TCLP Barlum	0.05	0.050	0.219	mg/L	07/01/11 20:33	6020	D.D.	
TCLP Cadmium	0.01	0.010	ND	mg/L	07/01/11 20:33	6020	D.D.	
TCLP Chromium	0.05	0.050	0.151	mg/L	07/01/11 20:33	6020	D.D.	
TCLP Lead	0.05	0.050	0.203	mg/L	07/01/11 20:33	6020	D.D.	
TCLP Nickel	0.05	0.050	0.258	mg/L	07/01/11 20:33	6020	D.D.	
TCLP Selenium	0.05	0.050	ND	mg/L	07/01/11 20:33	6020	D.D.	
TCLP Silver	0.01	0.010	ND	mg/L	07/01/11 20:33	6020	D.D.	
Digested by method 7470A on 0	77/01/11 at 10:45			-				
TCLP Mercury	0.001	0.001	ND	mg/L	07/01/11 18:22	7470A	K.O.	

Order ID: 11060658 Date: 7/8/2011 Page 3 of 13

W&M Environmental Group, Inc. Lori Siegelman

Analytical Report

Project Name: Exide Characterization

Customer Sample ID: Pallet-02

Oxidor Sample ID: 11060658-002 Matrix: Solid

Sample Received: 6/29/2011 Sample Collected: 6/29/2011 11:04

Sample Nece	Sample Necelved. 0/25/2011			Sain	pie Collecteu. 6/	29/2011 11	1:04	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Sample Prep								
TCLP Metals Extrac	ction							
TCLP Extraction					06/30/11 16:00	1311	D.C.	
Metals								
Digested by method 3005A on 0	07/01/11 at 10:45							
TCLP Antimony	0.05	0.050	ND) mg/L	07/01/11 21:39	6020	D.D.	
TCLP Arsenic	0.05	0.050	NE	mg/L	07/01/11 21:39	6020	D.D.	
TCLP Barlum	0.05	0.050	0.266	mg/L	07/01/11 21:39	6020	D.D.	
TCLP Cadmium	0.01	0.010	ND	mg/L	07/01/11 21:39	6020	D.D.	
TCLP Chromium	0.05	0.050	NE	mg/L	07/01/11 21:39	6020	D.D.	
TCLP Lead	0.05	0.050	ND	mg/L	07/01/11 21:39	6020	D.D.	
TCLP Nickel	0.05	0.050	NE	mg/L	07/01/11 21:39	6020	D.D.	
TCLP Selenium	0.05	0.050	ND	mg/L	07/01/11 21:39	6020	D.D.	
TCLP Silver	0.01	0.010	ND	mg/L	07/01/11 21:39	6020	D.D.	
Digested by method 7470A on 0	07/01/11 at 10:45			-				
TCLP Mercury	0.001	0.001	ND	ma/L	07/01/11 18:23	7470A	K.O.	

Order ID: 11060658 Date: 7/8/2011 Page 4 of 13

W&M Environmental Group, Inc. Lori Siegelman

Analytical Report

Project Name: Exide Characterization

Customer Sample ID: Oxidor Sample ID: Sample Received:	1106	0658-003						
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Sample Prep								
TCLP Metals Extraction								
TCLP Extraction					06/30/11 16:00	1311	D.C.	
Metals								
Digested by method 3005A on 07/01/11 a	£ 10:45							
TCLP Antimony	0.05	0.050	ND	mg/L	07/01/11 20:45	6020	D.D.	
TCLP Arsenic	0.05	0.050	ND	mg/L	07/01/11 20:45	6020	D.D.	
TCLP Barlum	0.05	0.050	0.220	mg/L	07/01/11 20:45	6020	D.D.	
TCLP Cadmlum	0.01	0.010	ND	mg/L	07/01/11 20:45	6020	D.D.	
TCLP Chromlum	0.05	0.050	ND	mg/L	07/01/11 20:45	6020	D.D.	
TCLP Lead	0.05	0.050	0.103	mg/L	07/01/11 20:45	6020	D.D.	
TCLP Nickel	0.05	0.050	ND	mg/L	07/01/11 20:45	6020	D.D.	
TCLP Selenium	0.05	0.050	ND	mg/L	07/01/11 20:45	6020	D.D.	
TCLP Silver	0.01	0.010		mg/L	07/01/11 20:45	6020	D.D.	
Digested by method 7470A on 07/01/11 a	£ 10:45			-				
TCLP Mercury	0.001	0.001	ND	mg/L	07/01/11 18:25	7470A	K.O.	

Order ID: 11060658 Date: 7/8/2011 Page 5 of 13

W&M Environmental Group, Inc. Lori Siegelman

Analytical Report

Project Name: Exide Characterization

Customer Sample ID: Pallet-04
Oxidor Sample ID: 11060658-004 Matrix: Solid

Sample Received: 6/29/2011 Sample Collected: 6/29/2011 12:17

Sample Rece	ivea: 6/29/	2011		Sam	pie Collected: 6/	29/2011 12	2:1/	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Sample Prep								
TCLP Metals Extrac	ction							
TCLP Extraction					06/30/11 16:00	1311	D.C.	
Metals								
Digested by method 3005A on 0	77/01/11 at 10:45							
TCLP Antimony	0.05	0.050	ND	mg/L	07/01/11 20:51	6020	D.D.	
TCLP Arsenic	0.05	0.050	ND	mg/L	07/01/11 20:51	6020	D.D.	
TCLP Barlum	0.05	0.050	0.225	mg/L	07/01/11 20:51	6020	D.D.	
TCLP Cadmium	0.01	0.010	ND	mg/L	07/01/11 20:51	6020	D.D.	
TCLP Chromium	0.05	0.050	ND	mg/L	07/01/11 20:51	6020	D.D.	
TCLP Lead	0.05	0.050	0.249	mg/L	07/01/11 20:51	6020	D.D.	
TCLP Nickel	0.05	0.050	ND	mg/L	07/01/11 20:51	6020	D.D.	
TCLP Selenium	0.05	0.050	ND	mg/L	07/01/11 20:51	6020	D.D.	
TCLP Silver	0.01	0.010	ND	mg/L	07/01/11 20:51	6020	D.D.	
Digested by method 7470A on 0	77/01/11 at 10:45			_				
TCLP Mercury	0.001	0.001	ND	ma/l	07/01/11 18:26	7470A	KO.	

Order ID: 11060658 Date: 7/8/2011 Page 6 of 13

W&M Environmental Group, Inc. Lori Siegelman

Analytical Report

Project Name: Exide Characterization

Customer Sample ID: Pallet-05 Oxidor Sample ID: 11060658-005 Matrix: Solid

Sample Rece	Sample Received: 6/29/2011			Sam	ple Collected: 6/	29/2011 12	2:56	
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Sample Prep								
TCLP Metals Extrac	tion							
TCLP Extraction					06/30/11 16:00	1311	D.C.	
Metals								
Digested by method 3005A on 0	17/01/11 at 10:45							
TCLP Antimony	0.05	0.050	ND	mg/L	07/01/11 20:57	6020	D.D.	
TCLP Arsenic	0.05	0.050	ND	mg/L	07/01/11 20:57	6020	D.D.	
TCLP Barlum	0.05	0.050	0.302	mg/L	07/01/11 20:57	6020	D.D.	
TCLP Cadmium	0.01	0.010	ND	mg/L	07/01/11 20:57	6020	D.D.	
TCLP Chromium	0.05	0.050	ND	mg/L	07/01/11 20:57	6020	D.D.	
TCLP Lead	0.05	0.050	0.059	mg/L	07/01/11 20:57	6020	D.D.	
TCLP Nickel	0.05	0.050	ND	mg/L	07/01/11 20:57	6020	D.D.	
TCLP Selenium	0.05	0.050	ND	mg/L	07/01/11 20:57	6020	D.D.	
TCLP Silver	0.01	0.010	ND	mg/L	07/01/11 20:57	6020	D.D.	
Digested by method 7470A on 0	17/01/11 at 10:45			-				
TCLP Mercury	0.001	0.001	ND	mg/L	07/01/11 18:27	7470A	K.O.	

Order ID: 11060658 Date: 7/8/2011 Page 7 of 13

W&M Environmental Group, Inc. Lori Siegelman

Sample Cross Reference

Project Name: Exide Characterization

Customer ID:	Lab ID:	Test	Method	QCBatchID:
Pallet-01	11060658-001	TCLP Mercury	7470A	MERC_03720_L
		TCLP Arsenic	6020	META_14136_L
		TCLP Barlum	6020	META_14136_L
		TCLP Cadmium	6020	META_14136_L
		TCLP Chromium	6020	META_14136_L
		TCLP Lead	6020	META_14136_L
		TCLP Nickel	6020	META_14136_L
		TCLP Selenium	6020	META_14136_L
		TCLP Silver	6020	META_14136_L
		TCLP Antimony	6020	META_14136_L
allet-02	11060658-002	TCLP Mercury	7470A	MERC_03720_L
		TCLP Arsenic	6020	META_14136_L
		TCLP Silver	6020	META_14136_L
		TCLP Selenium	6020	META_14136_L
		TCLP Nickel	6020	META_14136_L
		TCLP Lead	6020	META_14136_L
		TCLP Chromium	6020	META_14136_L
		TCLP Barlum	6020	META_14136_L
		TCLP Antimony	6020	META_14136_L
		TCLP Cadmium	6020	META_14136_L
allet-03	11060658-003	TCLP Mercury	7470A	MERC_03720_L
		TCLP Lead	6020	META_14136_L
		TCLP Antimony	6020	META_14136_L
		TCLP Arsenic	6020	META_14136_L
		TCLP Barlum	6020	META_14136_L
		TCLP Nickel	6020	META_14136_L
		TCLP Selenium	6020	META_14136_L
		TCLP Silver	6020	META_14136_L
		TCLP Cadmium	6020	META_14136_L
		TCLP Chromium	6020	META_14136_L
allet-04	11060658-004	TCLP Mercury	7470A	MERC_03720_L
		TCLP Silver	6020	META_14136_L
		TCLP Nickel	6020	META_14136_L
		TCLP Lead	6020	META_14136_L
		TCLP Cadmium	6020	META_14136_L
		TCLP Barlum	6020	META_14136_L
		TCLP Arsenic	6020	META_14136_L
		TCLP Antimony	6020	META_14136_L
		TCLP Chromlum	6020	META_14136_L
		TCLP Selenium	6020	META_14136_L
allet-05	11060658-005	TCLP Mercury	7470A	MERC_03720_L
		TCLP Arsenic	6020	META 14136 L
		TCLP Selenium	6020	META_14136_L
		TCLP Nickel	6020	META_14136_L
		TCLP Lead	6020	META_14136_L
		TCLP Chromium	6020	META 14136 L

Order ID: 11060658 Date: 7/8/2011 Page 8 of 13

W&M Environmental Group, Inc. Lori Siegelman

Sample Cross Reference

Project Name: Exide Characterization

Customer ID:	Lab ID:	Test	Method	QCBatchID:
		TCLP Barlum	6020	META_14136_L
		TCLP Antimony	6020	META_14136_L
		TCLP Silver	6020	META_14136_L
		TCLP Cadmium	6020	META_14136_L

Order ID: 11060658 Date: 7/8/2011 Page 9 of 13

W&M Environmental Group, Inc. Lori Siegelman

QC Summary

Project Name: Exide Characterization

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flags
QCBatch	ID MERC_03720_L								
Blank	TCLP Mercury	ND mg/L							
LCS	TCLP Mercury	0.005 mg/L		0.005 mg/L	94%	85-115%			
LCSD	TCLP Mercury	0.005 mg/L	85	0.005 mg/L	98%	-115%	2.0%	0-25%	
MS	TCLP Mercury	0.019 mg/L	ND	0.02 mg/L	97%	80-120%			
MSD	TCLP Mercury	0.020 mg/L	ND 80	0.02 mg/L	99%	-120%	4.1%	0-25%	
QCBatch	ID META_14136_L								
Blank	TCLP Antimony	ND mg/L							
	TCLP Arsenic	ND mg/L							
	TCLP Barlum	ND mg/L							
	TCLP Cadmium	ND mg/L							
	TCLP Chromium	ND mg/L							
	TCLP Lead	ND mg/L							
	TCLP Nickel	ND mg/L							
	TCLP Selenium	ND mg/L							
	TCLP Silver	ND mg/L							
LCS	TCLP Antimony	0.103 mg/L		0.1 mg/L	103%	85-115%			
	TCLP Arsenic	0.105 mg/L		0.1 mg/L	105%	85-115%			
	TCLP Barlum	0.106 mg/L		0.1 mg/L	106%	85-115%			
	TCLP Cadmium	0.107 mg/L		0.1 mg/L	107%	85-115%			
	TCLP Chromium	0.111 mg/L		0.1 mg/L	111%	85-115%			
	TCLP Lead	0.101 mg/L		0.1 mg/L	101%	85-115%			
	TCLP Nickel	0.108 mg/L		0.1 mg/L	108%	85-115%			
	TCLP Selenium	0.111 mg/L		0.1 mg/L	111%	85-115%			
	TCLP Silver	0.107 mg/L		0.1 mg/L	107%	85-115%			
LCSD	TCLP Antimony	0.102 mg/L	85	0.1 mg/L	102%	-115%	0.7%	0-20%	
	TCLP Arsenic	0.104 mg/L	85	0.1 mg/L	104%	-115%	0.8%	0-20%	
	TCLP Barlum	0.105 mg/L	85	0.1 mg/L	105%	-115%	1.1%	0-20%	
	TCLP Cadmium	0.106 mg/L	85	0.1 mg/L	106%	-115%	1.1%	0-20%	
	TCLP Chromium	0.111 mg/L	85	0.1 mg/L	111%	-115%	0.1%	0-20%	
	TCLP Lead	0.100 mg/L	85	0.1 mg/L	100%	-115%	0.7%	0-20%	
	TCLP Nickel	0.107 mg/L	85	0.1 mg/L	107%	-115%	1.1%	0-20%	
	TCLP Selenium	0.111 mg/L	85	0.1 mg/L	111%	-115%	0.3%	0-20%	
	TCLP Silver	0.106 mg/L	85	0.1 mg/L	106%	-115%	1.1%	0-20%	
MS	TCLP Antimony	0.513 mg/L	ND	0.5 mg/L	103%	80-120%			
	TCLP Arsenic	0.529 mg/L	ND	0.5 mg/L	106%	80-120%			
	TCLP Barlum	0.652 mg/L	0.136 mg/L	0.5 mg/L	103%	80-120%			
	TCLP Cadmium	0.519 mg/L	ND	0.5 mg/L	104%	80-120%			
	TCLP Chromium	0.541 mg/L	ND	0.5 mg/L	108%	80-120%			
	TCLP Lead	0.502 mg/L	ND	0.5 mg/L	100%	80-120%			
	TCLP Nickel	0.528 mg/L	ND	0.5 mg/L	106%	80-120%			
	TCLP Selenium	0.553 mg/L	ND	0.5 mg/L	111%	80-120%			
	TCLP Silver	0.523 mg/L	ND	0.5 mg/L	105%	80-120%			
MSD	TCLP Antimony	0.509 mg/L	ND 80	0.5 mg/L	102%	-120%	0.7%	0-20%	

www.OXIDOR.com • 1825 E. Plano Parkway #160 • Plano, TX 75074 • Tel: (972) 424-6422 • Fax: (972) 424-6508

Order ID: 11060658 Date: 7/8/2011 Page 10 of 13

W&M Environmental Group, Inc. Lori Siegelman

QC Summary

Project Name: Exide Characterization

		Reference			Rec		RPD	
QC Type Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flags
QCBatchID META_14136_L								
TCLP Arsenic	0.527 mg/L	ND 80	0.5 mg/L	106%	-120%	0.3%	0-20%	
TCLP Barlum	0.645 mg/L	0.136 mg/L	0.5 mg/L	102%	80-120%	1.1%	0-20%	
TCLP Cadmium	0.500 mg/L	ND 80	0.5 mg/L	100%	-120%	3.7%	0-20%	
TCLP Chromlum	0.538 mg/L	ND 80	0.5 mg/L	108%	-120%	0.6%	0-20%	
TCLP Lead	0.490 mg/L	ND 80	0.5 mg/L	98%	-120%	2.3%	0-20%	
TCLP Nickel	0.522 mg/L	ND 80	0.5 mg/L	105%	-120%	1.0%	0-20%	
TCLP Selenium	0.538 mg/L	ND 80	0.5 mg/L	108%	-120%	2.7%	0-20%	
TCLP Silver	0.503 mg/L	ND 80	0.5 mg/L	101%	-120%	3.9%	0-20%	

Order ID: 11060658 Date: 7/8/2011 Page 11 of 13

W&M Environmental Group, Inc. Lori Siegelman

Project Name: Exide Characterization

Case Narrative

ppm	Parts per million = mg/Kg or mg/L
ppb	Parts per billion = ug/Kg or ug/L
MQL	Method quantitation limit
SDL	Sample detection limit (reflects any laboratory adjustments made to the sample during analysis such as dry weight or dilutions)
SQL	Sample quantitation limit (reflects any laboratory adjustments made to the sample during analysis such as dry weight or dilution
ND	Analyte not detected at or above SQL
LCS/LCSD	Laboratory control spike / Laboratory control spike duplicate
MS/MSD	Matrix solke / Matrix solke duplicate

MS/MSD Matrix spike / Matrix spike duplicate

RPD Relative percent difference

Sub Analysis performed by subcontract laboratory

Refer to QC section

Solid sample results reported on a dry weight basis for all applicable analysis, unless otherwise noted. Dry weight calculations based upon % solids obtained as outlined in EPA method 5035 section 7.5

TCLP start extraction temperature for QC Batch ID TCLP_09819_8 was 26.4deg C (23 ± 2deg).

This report is intended only for the use of W&M Environmental Group, Inc. and may contain information that is privileged and confidential. It may not be reproduced in full (or in part) without the expressed written permission of W&M Environmental Group, Inc. and Oxidor Laboratories, LLC.

Oxidor Laboratories, LLC certifies to the best of its knowledge that all results contained in this report are consistent with the National Environmental Laboratory Accreditation Program, except where otherwise noted

Order ID: 11060658 Date: 7/8/2011 Page 12 of 13

W&M Environmental Group, Inc. Lori Siegelman

Sample Preservation Verification

Project Name: Exide Characterization	
Passint town: 6.0 °C on les	All applicable VOA's received free of beadenage: N/A

Receipt temp. 5.0 C on ice	All applicable VOA's received free of fleadspace. N/A
Receipt method: Client	

Custody seal intact: Not Present	All samples / labels received intact: Yes

Customer Sample ID: Pallet-01	Collected By: Nick Foreman
Ovidor Samolo ID: 44060659-004	Collector Affiliation: W&M Environmental Group, Inc.

Collected: 06/29/11 10	0:20 Matrix:	Solid
------------------------	--------------	-------

Bottle Type	Count	Collection Method	Parts / Interval	Preservation	DН	
Plastic Bag	1			Temp	-	

Customer Sample ID:	Pallet-02	Collected By:	Nick Foreman
oustomer cample io.	I dilet 02	concord by.	MICK I OF CHIMIN

Oxidor Sample ID: 11060658-002 Collector Affiliation: W&M Environmental Group, Inc.

Collected: 06/29/11 11:04 Matrix: Solid

Customer Sample ID: Pallet-03 Collected By: Nick Foreman

Oxidor Sample ID: 11060658-003 Collector Affiliation: W&M Environmental Group, Inc.

Collected: 06/29/11 11:38 Matrix: Solid

Bottle Type Count Collection Method Parts / Interval Preservation pH

Plastic Bag 1 Temp -

Customer Sample ID: Pallet-04 Collected By: Nick Foreman

Oxidor Sample ID: 11060658-004 Collector Affiliation: W&M Environmental Group, Inc.

Collected: 06/29/11 12:17 Matrix: Solid

Bottle Type Count Collection Method Parts / Interval Preservation pH Plastic Bag 1 Temp -

Customer Sample ID: Pallet-05 Collected By: Nick Foreman

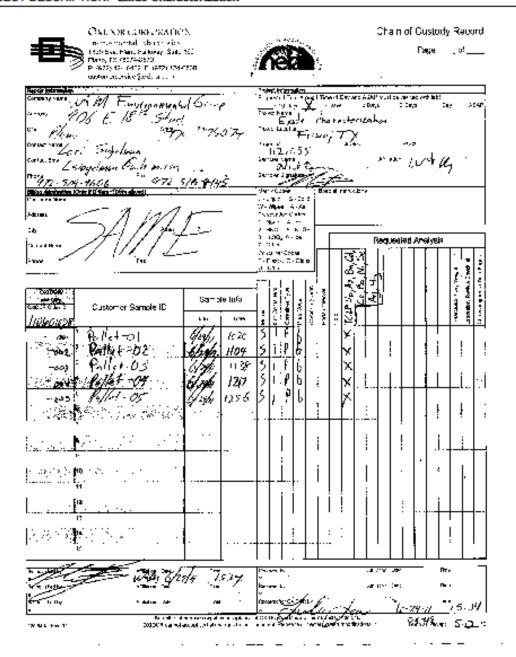
Oxidor Sample ID: 11060658-005 Collector Affiliation: W&M Environmental Group, Inc.

Collected: 06/29/11 12:56 Matrix: Solid

Bottle Type Count Collection Method Parts / Interval Preservation pH
Plastic Bag 1 Temp -

Sample conditions at time of receipt at laboratory verified in part or in whole by:

LJ.



Order ID: 11060658 Date: 7/8/2011 Page 13 of 13

Chain of Custody

PROJECT DESCRIPTION: Exide Characterization

SW 846, CHAPTER 9, TABLE 9-1

APPENDIX C

TABLE 9-1. BASIC STATISTICAL TERMINOLOGY APPLICABLE TO SAMPLING PLANS FOR SOLID WASTES

Terminology	Symbol	Mathematical Equation (Equation)
 Variable (e.g., barium or endrin) 	х	_
 Individual measurement of variable 	\mathbf{x}_{i}	
 Mean of possible measurements of variable (population mean) 	μ	$\mu = \frac{\frac{r-1}{N}}{N}, \text{with N - number of} \qquad (1)$ $\mu = \frac{r-1}{N}, \text{possible measurements}$
 Mean of measurements generated by sample (sample mean) 	X	Simple random sampling and systematic random sampling n \(\sum_{\text{\chi}} x_i \)
		$\overline{x} = \frac{i-1}{n}$, with n = number of (2a)
		Stratified random sampling
		with \overline{x}_k - stratum (2b) mean and W_k = fraction of population $\overline{x} - \sum W_x \overline{x_x}$ tion of population represented by Stratum $k-1$, k (number of strata $[k]$ range from 1 to r)
• Variance of sample	s²	Simple random sampling and systemaic random sampling
		$s^{2} = \frac{\sum_{j=1}^{n} x_{j}^{2} - (\sum_{j=1}^{n} x_{j})^{2}/n}{n-1}$ (3a)
		Stratified random sampling
		with s_{k}^{z} - stratum (3b) variance and N_{k} - fraction of population represent by Stratum k (number of strata $[k]$ k -I , ranges from 1 to r)

TABLE 9-1. (continued)

Terminology	Symbo1	Mathematical Equation ((Equation)
Standard deviation of sample	S	$s = \sqrt{s^2}$	(4)
 Standard error (also standard error of mean and standard deviation of mean) of sample 	5 ₂	$s_v = \frac{s}{\sqrt{n}}$	(5)
 Confidence interval for μ^a 	c.T	with $t_{.20}$ obtained from Table 2 for appropriate $CI=\overline{x}\pm t_{.20}$ s_x . degrees of freedo	(6) om.
• Regulatory threshold ^a	RT	Defined by EPA (e.g., 100 ppm for barium in elutriate of EP toxicity)	(7)
 Appropriate number of samples to collect from a solid waste (financial constraints not considered 	n	$n = \frac{t \cdot \frac{2}{20} \cdot s^2}{\Delta^2}$, with $\Delta = RT - x$	(8)
• Degrees of freedom	df	df = n - 1	(9)
• Square root transformation		X; + ½	(10)
• Arcsin transformation		Arcsin p; if necessary, refer to any text on basic statistics; measurements must be con- verted to percentages (p)	(11)

 $[^]a$ The upper limit of the CI for μ is compared with the applicable regulatory threshold (RT) to determine if a solid waste contains the variable (chemical contaminant) of concern at a hazardous level. The contaminant of concern is not considered to be present in the waste at a hazardous level if the upper limit of the CI is less than the applicable RT. Otherwise, the opposite conclusion is reached.

CD-ROM

NINE - 3

Revision 0 Date <u>September 1986</u>

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 1 of 12

Monday, July 11, 2011

Exide Technologies Environmental Manager P.O. Box 250 Frisco, TX 75034

Tel: (972) 335-2121 Fax: (972) 377-2707

Re: Project Name: Slag Treatment Sump Water

Oxidor received 1 liquid sample(s). The analysis performed were as follows:

Sample | Sample | D | Matrix | Collected | Analysis |

11070044-001 | STS-063011 | Liquid | 6/30/2011 | Antimony, Arsenic, Barlum, Beryllium, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium, Silver, TCLP Antimony, TCLP Arsenic, TCLP Barlum, TCLP Beryllium, TCLP Cadmium, TCLP Chromium, TCLP Chromium, TCLP Nickel, TCLP Mercury, TCLP Metals Extraction, TCLP Nickel, TCLP Silver, TCLP Tin, TCLP Zinc, Tin, Zinc

Respectfully submitted,

Charles Brungardt

President

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 2 of 12

Exide Technologies Environmental Manager

Analytical Report

Project Name: Slag Treatment Sump Water

Customer Sample ID: STS-063011

Oxidor Sample ID: 11070044-001 Matrix: Liquid Sample Received: 7/1/2011 Sample Collected: 6/30/2011

Sample Receive	d: 7/1/2	011		Sam	ple Collected: 6/	30/2011		
Parameter	MQL	SQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Sample Prep								
TCLP Metals Extraction	n							
TCLP Extraction					07/05/11 14:30	1311	D.C.	
Metals								
Digested by method 3005A on 07/07/	11 at 10:30							
Antimony	0.005	0.005	0.180	mg/L	07/07/11 19:32	6020	K.O.	
Arsenic	0.005	0.005	0.142	mg/L	07/07/11 19:32	6020	D.D.	
Barlum	0.005	0.055	2.25	mg/L	07/07/11 19:38	6020	D.D.	D-1
Beryllium	0.005	0.005	ND	mg/L	07/07/11 19:32	6020	K.O.	
Cadmium	0.005	0.005	0.228	mg/L	07/07/11 19:32	6020	D.D.	
Chromium	0.005	0.005	0.068	mg/L	07/07/11 19:32	6020	D.D.	
Lead	0.005	0.500	20.9	mg/L	07/08/11 17:24	6020	K.O.	D-1
Nickei	0.005	0.005	0.314	mg/L	07/07/11 19:32	6020	K.O.	
Selenium	0.005	0.005	0.315	mg/L	07/07/11 19:32	6020	D.D.	
Silver	0.001	0.001	0.001	mg/L	07/07/11 19:32	6020	D.D.	
TCLP Antimony	0.05	0.050	ND	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Arsenic	0.05	0.050	ND	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Barlum	0.05	0.050	0.176	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Beryllum	0.05	0.050	ND	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Cadmium	0.01	0.010	ND	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Chromlum	0.05	0.050	ND	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Lead	0.05	0.050	ND	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Nickel	0.05	0.050	ND	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Selenium	0.05	0.050	0.145	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Silver	0.01	0.010	ND	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Tin	0.05	0.050	ND	mg/L	07/07/11 14:40	6020	D.D.	
TCLP Zinc	0.01	0.010	ND	mg/L	07/07/11 14:40	6020	D.D.	
Tin	0.01	0.109	2.07	mg/L	07/07/11 19:38	6020	K.O.	D-1
Zinc	0.005	0.055	1.84	mg/L	07/07/11 19:38	6020	K.O.	D-1
Digested by method 7470A on 07/07/								
Mercury	0.0002	0.0002		mg/L	07/07/11 17:52	7470A	K.O.	
TCLP Mercury	0.001	0.001	ND	mg/L	07/06/11 17:43	7470A	K.O.	

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 3 of 12

Exide Technologies Environmental Manager

Sample Cross Reference

Customer ID:	Lab ID:	Test	Method	QCBatchID:
STS-063011	11070044-001	TCLP Mercury	7470A	MERC_04220_L
		Mercury	7470A	MERC_04320_L
		TCLP Barlum	6020	META_14736_L
		TCLP Arsenic	6020	META_14736_L
		TCLP Beryllum	6020	META_14736_L
		TCLP Cadmium	6020	META_14736_L
		TCLP Chromium	6020	META_14736_L
		TCLP Lead	6020	META_14736_L
		TCLP Selenium	6020	META_14736_L
		TCLP Silver	6020	META_14736_L
		TCLP Tin	6020	META_14736_L
		TCLP Zinc	6020	META_14736_L
		TCLP Nickel	6020	META_14736_L
		TCLP Antimony	6020	META_14736_L
		Selenium	6020	META_14936_L
		Arsenic	6020	META_14936_L
		Barlum	6020	META_14936_L
		Beryllum	6020	META_14936_L
		Cadmium	6020	META_14936_L
		Chromium	6020	META_14936_L
		Lead	6020	META_14936_L
		Nickel	6020	META_14936_L
		Silver	6020	META_14936_L
		Antimony	6020	META_14936_L
		Zinc	6020	META_14936_L
		Tin	6020	META_14936_L

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 4 of 12

Exide Technologies Environmental Manager

QC Summary

QC Type	Parameter	Result	Reference Value	Spike Conc	Rec	Rec Limits	RPD	RPD Limits	Flags
QCBatch	ID MERC_04220_L								
Blank	TCLP Mercury	ND mg/L							
LCS	TCLP Mercury	0.005 mg/L		0.005 mg/L	103%	85-115%			
LCSD	TCLP Mercury	0.005 mg/L		0.005 mg/L	107%	85-115%	7.2%	0-25%	
MS	TCLP Mercury	0.008 mg/L	ND	0.02 mg/L	42%	80-120%			Q-7
MSD	TCLP Mercury	0.008 mg/L	ND	0.02 mg/L	38%	80-120%	4.3%	0-25%	Q-7
QCBatch	ID MERC_04320_L								
Blank	Mercury	ND mg/L							
LCS	Mercury	0.0050 mg/L		0.005 mg/L	100%	85-115%			
LCSD	Mercury	0.0051 mg/L		0.005 mg/L	103%	85-115%	2.9%	0-25%	
MS	Mercury	0.0046 mg/L	ND	0.005 mg/L	91%	80-120%			
MSD	Mercury	0.0045 mg/L	ND	0.005 mg/L	91%	80-120%	1.3%	0-25%	
QCBatch	ID META 14736 L								
Blank	TCLP Antimony	ND mg/L							
	TCLP Arsenic	ND mg/L							
	TCLP Barlum	ND mg/L							
	TCLP Beryllum	ND mg/L							
	TCLP Cadmium	ND mg/L							
	TCLP Chromlum	ND mg/L							
	TCLP Lead	ND mg/L							
	TCLP Nickel	ND mg/L							
	TCLP Selenium	ND mg/L							
	TCLP Silver	ND mg/L							
	TCLP Tin	ND mg/L							
	TCLP Zinc	ND mg/L							
LCS	TCLP Antimony	0.105 mg/L		0.1 mg/L	105%	85-115%			
	TCLP Arsenic	0.104 mg/L		0.1 mg/L	104%	85-115%			
	TCLP Barlum	0.103 mg/L		0.1 mg/L	103%	85-115%			
	TCLP Beryllum	0.105 mg/L		0.1 mg/L	105%	85-115%			
	TCLP Cadmium	0.108 mg/L		0.1 mg/L	108%	85-115%			
	TCLP Chromlum	0.103 mg/L		0.1 mg/L	104%	85-115%			
	TCLP Lead	0.106 mg/L		0.1 mg/L	106%	85-115%			
	TCLP Nickel	0.107 mg/L		0.1 mg/L	107%	85-115%			
	TCLP Selenium	0.103 mg/L		0.1 mg/L	104%	85-115%			
	TCLP Silver	0.108 mg/L		0.1 mg/L	108%	85-115%			
	TCLP Tin	1.02 mg/L		1 mg/L	102%	85-115%			
	TCLP Zinc	0.109 mg/L		0.1 mg/L	109%	85-115%			
LCSD	TCLP Antimony	0.104 mg/L		0.1 mg/L	104%	85-115%	0.7%	0-20%	
	TCLP Arsenic	0.105 mg/L		0.1 mg/L	105%	85-115%	0.5%	0-20%	
	TCLP Barlum	0.103 mg/L		0.1 mg/L	103%	85-115%	0.0%	0-20%	
	TCLP Beryllum	0.105 mg/L		0.1 mg/L	105%	85-115%	0.5%	0-20%	
	TCLP Cadmium	0.106 mg/L		0.1 mg/L	106%	85-115%	1.9%	0-20%	
	TCLP Chromium	0.103 mg/L		0.1 mg/L	103%	85-115%	0.0%	0-20%	

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 5 of 12

Exide Technologies Environmental Manager

QC Summary

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID META 14736 L								
	TCLP Lead	0.108 mg/L		0.1 mg/L	108%	85-115%	1.4%	0-20%	
	TCLP Nickel	0.105 mg/L		0.1 mg/L	105%	85-115%	1.9%	0-20%	
	TCLP Selenium	0.105 mg/L		0.1 mg/L	105%	85-115%	1.6%	0-20%	
	TCLP Silver	0.107 mg/L		0.1 mg/L	107%	85-115%	1.2%	0-20%	
	TCLP Tin	1.03 mg/L		1 mg/L	103%	85-115%	1.0%	0-20%	
	TCLP Zinc	0.110 mg/L		0.1 mg/L	110%	85-115%	0.6%	0-20%	
MS	TCLP Antimony	0.488 mg/L	ND	0.5 mg/L	98%	80-120%			
	TCLP Arsenic	0.513 mg/L	ND	0.5 mg/L	103%	80-120%			
	TCLP Barlum	1.13 mg/L	0.703 mg/L	0.5 mg/L	85%	80-120%			
	TCLP Beryllum	0.525 mg/L	ND	0.5 mg/L	105%	80-120%			
	TCLP Cadmium	0.500 mg/L	ND	0.5 mg/L	100%	80-120%			
	TCLP Chromium	0.525 mg/L	ND	0.5 mg/L	105%	80-120%			
	TCLP Lead	0.520 mg/L	ND	0.5 mg/L	104%	80-120%			
	TCLP Nickel	_	0.026 mg/L	0.5 mg/L	104%	80-120%			
	TCLP Selenium	0.513 mg/L	ND	0.5 mg/L	103%	80-120%			
	TCLP Silver	0.515 mg/L	ND	0.5 mg/L	103%	80-120%			
	TCLP Tin	_	0.004 mg/L	5 mg/L	100%	80-120%			
	TCLP Zinc	_	0.024 mg/L	0.5 mg/L	106%	80-120%			
MSD	TCLP Antimony	0.527 mg/L	ND	0.5 mg/L	106%	80-120%	7.8%	0-20%	
	TCLP Arsenic	0.548 mg/L	ND	0.5 mg/L	110%	80-120%	6.6%	0-20%	
	TCLP Barlum	_	0.703 mg/L	0.5 mg/L	97%	80-120%	5.2%	0-20%	
	TCLP Beryllum	0.528 mg/L	ND	0.5 mg/L	106%	80-120%	0.7%	0-20%	
	TCLP Cadmium	0.533 mg/L	ND	0.5 mg/L	107%	80-120%	6.5%	0-20%	
	TCLP Chromium	0.546 mg/L	ND	0.5 mg/L	109%	80-120%	3.9%	0-20%	
	TCLP Lead	0.529 mg/L	ND	0.5 mg/L	106%	80-120%	1.7%	0-20%	
	TCLP Nickel	_	0.026 mg/L	0.5 mg/L	109%	80-120%	4.6%	0-20%	
	TCLP Selenium	0.565 mg/L	ND	0.5 mg/L	113%	80-120%	9.6%	0-20%	
	TCLP Silver	0.541 mg/L	ND	0.5 mg/L	108%	80-120%	4.9%	0-20%	
	TCLP Tin	_	0.004 mg/L	5 mg/L	106%	80-120%	6.0%	0-20%	
	TCLP Zinc	0.568 mg/L	0.024 mg/L	0.5 mg/L	109%	80-120%	2.2%	0-20%	
QCBatch	ID META_14936_L								
Blank	Antimony	ND mg/L							
	Arsenic	ND mg/L							
	Barlum	ND mg/L							
	Beryllum	ND mg/L							
	Cadmlum	ND mg/L							
	Chromlum	ND mg/L							
	Lead	ND mg/L							
	Nickel	ND mg/L							
	Selenium	ND mg/L							
	Silver	ND mg/L							
	Tin	ND mg/L							
	Zinc	ND mg/L							

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 6 of 12

Exide Technologies Environmental Manager

QC Summary

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flags
QCBatch	hID META_14936_L								
LCS	Antimony	0.104 mg/L		0.1 mg/L	104%	85-115%			
	Arsenic	0.104 mg/L		0.1 mg/L	104%	85-115%			
	Barlum	0.104 mg/L		0.1 mg/L	104%	85-115%			
	Beryllum	0.110 mg/L		0.1 mg/L	110%	85-115%			
	Cadmium	0.106 mg/L		0.1 mg/L	106%	85-115%			
	Chromium	0.101 mg/L		0.1 mg/L	101%	85-115%			
	Lead	0.109 mg/L		0.1 mg/L	109%	85-115%			
	Nickel	0.105 mg/L		0.1 mg/L	105%	85-115%			
	Selenium	0.105 mg/L		0.1 mg/L	105%	85-115%			
	Silver	0.106 mg/L		0.1 mg/L	106%	85-115%			
	Tin	1.02 mg/L		1 mg/L	102%	85-115%			
	Zinc	0.108 mg/L		0.1 mg/L	108%	85-115%			
LCSD	Antimony	0.103 mg/L		0.1 mg/L	103%	85-115%	1.1%	0-20%	
	Arsenic	0.104 mg/L		0.1 mg/L	104%	85-115%	0.1%	0-20%	
	Barlum	0.103 mg/L		0.1 mg/L	104%	85-115%	0.5%	0-20%	
	Beryllum	0.109 mg/L		0.1 mg/L	109%	85-115%	0.7%	0-20%	
	Cadmium	0.105 mg/L		0.1 mg/L	105%	85-115%	0.9%	0-20%	
	Chromium	0.101 mg/L		0.1 mg/L	101%	85-115%	0.2%	0-20%	
	Lead	0.112 mg/L		0.1 mg/L	112%	85-115%	2.9%	0-20%	
	Nickel	0.105 mg/L		0.1 mg/L	105%	85-115%	0.4%	0-20%	
	Selenium	0.105 mg/L		0.1 mg/L	105%	85-115%	0.3%	0-20%	
	Silver	0.106 mg/L		0.1 mg/L	106%	85-115%	0.1%	0-20%	
	Tin	1.03 mg/L		1 mg/L	103%	85-115%	1.3%	0-20%	
	Zinc	0.108 mg/L		0.1 mg/L	108%	85-115%	0.2%	0-20%	
MS	Antimony	0.532 mg/L	ND	0.5 mg/L	106%	80-120%			
	Arsenic	0.524 mg/L	ND	0.5 mg/L	105%	80-120%			
	Barlum	0.578 mg/L	0.051 mg/L	0.5 mg/L	105%	80-120%			
	Beryllium	0.569 mg/L	ND	0.5 mg/L	114%	80-120%			
	Cadmium	0.528 mg/L	ND	0.5 mg/L	106%	80-120%			
	Chromium	0.503 mg/L	ND	0.5 mg/L	101%	80-120%			
	Lead	0.560 mg/L	ND	0.5 mg/L	112%	80-120%			
	Nickel	0.511 mg/L	ND	0.5 mg/L	102%	80-120%			
	Selenium	0.513 mg/L	ND	0.5 mg/L	103%	80-120%			
	Silver	0.527 mg/L	ND	0.5 mg/L	105%	80-120%			
	Tin	5.34 mg/L	ND	5 mg/L	107%	80-120%			
	Zinc	_	0.042 mg/L	0.5 mg/L	105%	80-120%			
MSD	Antimony	0.530 mg/L	ND	0.5 mg/L	106%	80-120%	0.3%	0-20%	
	Arsenic	0.523 mg/L	ND	0.5 mg/L	105%	80-120%	0.2%	0-20%	
	Barlum	_	0.051 mg/L	0.5 mg/L	106%	80-120%	0.6%	0-20%	
	Beryllum	0.578 mg/L	ND	0.5 mg/L	116%	80-120%	1.6%	0-20%	
	Cadmium	0.526 mg/L	ND	0.5 mg/L	105%	80-120%	0.4%	0-20%	
	Chromium	0.495 mg/L	ND	0.5 mg/L	99%	80-120%	1.6%	0-20%	
	Lead	0.544 mg/L	ND	0.5 mg/L	109%	80-120%	2.9%	0-20%	

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 7 of 12

Exide Technologies Environmental Manager

QC Summary

	-	Reference			Rec		RPD	
QC Type Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flags
QCBatchID META_14936_L								
Nickel	0.513 mg/L	ND	0.5 mg/L	103%	80-120%	0.4%	0-20%	
Selenium	0.510 mg/L	ND	0.5 mg/L	102%	80-120%	0.6%	0-20%	
Silver	0.531 mg/L	ND	0.5 mg/L	106%	80-120%	0.8%	0-20%	
Tin	5.35 mg/L	ND	5 mg/L	107%	80-120%	0.2%	0-20%	
Zinc	0.554 mg/L	ND	0.5 mg/L	111%	80-120%	2.0%	0-20%	

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 8 of 12

Exide Technologies Environmental Manager

Case Narrative

Project Name:	Slag Treatment Sump Water
D-1	Elevated reporting limit(s) due to dilution. Dilution resulted from sample matrix interference, high target analyte(s), high non- target analyte(s) or a combination thereof.
Q-7	Recovery and/or RPD outside desirable limits.
ppm	Parts per million = mg/Kg or mg/L
ppb	Parts per billion = ug/Kg or ug/L
MQL	Method quantitation limit
SDL	Sample detection limit (reflects any laboratory adjustments made to the sample during analysis such as dry weight or dilutions)
SQL	Sample quantitation limit (reflects any laboratory adjustments made to the sample during analysis such as dry weight or dilution
ND	Analyte not detected at or above SQL
LCS/LCSD	Laboratory control spike / Laboratory control spike duplicate
MS/MSD	Matrix splike / Matrix splike duplicate
RPD	Relative percent difference
Sub	Analysis performed by subcontract laboratory
	Refer to QC section

Solid sample results reported on a dry weight basis for all applicable analysis, unless otherwise noted. Dry weight calculations based upon % solids obtained as outlined in EPA method 5035 section 7.5

This report is intended only for the use of Exide Technologies and may contain information that is privileged and confidential. It may not be reproduced in full (or in part) without the expressed written permission of Exide Technologies and Oxidor Laboratories, LLC.

Oxidor Laboratories, LLC certifies to the best of its knowledge that all results contained in this report are consistent with the National Environmental Laboratory Accreditation Program, except where otherwise noted.

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 9 of 12

Exide Technologies Environmental Manager

Sample Preservation Verification

Project Name: Slag Treatment Sump Water

Receipt temp: 2.9 °C on Ice All applicable VOA's received free of headspace: N/A

Receipt method: Courier

Custody seal intact: Not Present All samples / labels received intact: Yes

Customer Sample ID: STS-063011 Collected By: Edward Hardy

Oxidor Sample ID: 11070044-001 Collector Affiliation:

Collected: 06/30/11 Matrix: Liquid

maan. Erquia

Indicated

<u>Bottle Type Count Collection Method Parts / Interval Preservation pH</u>

Customer Container 2 Grab Temp -

Sample conditions at time of receipt at laboratory verified in part or in whole by:

LJ.

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 10 of 12

Chain of Custody

PROJECT DESCRIPTION: Slag Treatment Sump Water

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 11 of 12

Chain of Custody

PROJECT DESCRIPTION: Slag Treatment Sump Water

CHAIN OF CUSTODY RUCORB

ACCINED. M. F. P. San			PLANTIFICA M	Entering the Color of the Color	Г	HELD Spirit Class	110	<u>.</u>	
PARTY BURNING AND TAKEN AND THE RESERVE OF THE PARTY OF T		i i				Studio-18			
SOUTH PAST	bis co	ig apr	i i i i i i i i i i i i i i i i i i i	9 0 1 PO	[=	TOTAL TARIL	· rmu	PLYKKATO- BANDSCHOLD FILM PILM 2 AANULDSCHOLD FILM 2	: <u>\$</u>
ETS 093011 0+	1376-0		5	JULYAR NUBBER SELECT BY			┌	ALCOHOL A	A
				ALPHORAGE M. Fa. Sr. Zn Ro					
					Ĺ.,				
DEPTH SEMBLICHEN: SLA	44,11805413	HAN IXIVIA	HAND ON HE	METH INWINISTRASSING SEASTREST WITNESS SEPTEMENT OF WHITE VARIABLES COLLECTED.					
(-1	HAIL IILSI	लबार वा इस	KAYAMAKSA AMBANCERSAMI OH SAHISTIHIKKAT	NOT SHOW					
ĭ	POPE ZINABAS	149-13							

present or some Stores	Seminarias.	TATE THE STATE OF	i d	NAVOVE BLANK AND	1 FT Na CTOLURY	=	: 12
FREE STATE OF THE	REPRESENTATION DATE	Ea	É	PATTERNAL A	MEMBER PE	Ē	F
Harm (the new April 2) and	SHIVENING	E/O	Ē	INTRODUSE PERCE	IN CLUMIN	Ė	Ē
					j	I	-

Order ID: 11070044 Date: 7/11/2011 Revised: 7/18/2011 Page 12 of 12

Chain of Custody

PROJECT DESCRIPTION: Slag Treatment Sump Water

Page 1 of 1

Homer Youngblood

Prom: Sedige Cidorea

Sept: Wednesday July 13, 2011 1:69 PM

To: Hamer Youngblood Subject: Rename project report

-lames

As per our phone conversation please rename the project name on the analytical with Colour warpter \$1107-034-4-001

Regions from Stag Treatment Studge to Stag Treatment Sump Weller I'm also etterwing the consided and

000.

Hrank you

gangs Dalmis. Prisco QC Lab / Encironmental Phone: 972/333/2424 ex 24 Paxi 972/377/2707

FMAIL GLORGE/ORDONLZ:@UXIDE/COM

This mossage area on grow a subsectivity and air partitions information and it is new at the temporal formation and it is new at the production of considerations of considerations are considerated to the subsection of considerations are considerated to the subsection of considerations are considerated to the subsection of the subsection of considerations are considerated to the subsection of the subsectio

7/18/2011

RCRA FACILITY INVESTIGATION FOR GNB INCORPORATED

Frisco, Texas VOLUME I/II

May 8, 1991

Prepared By

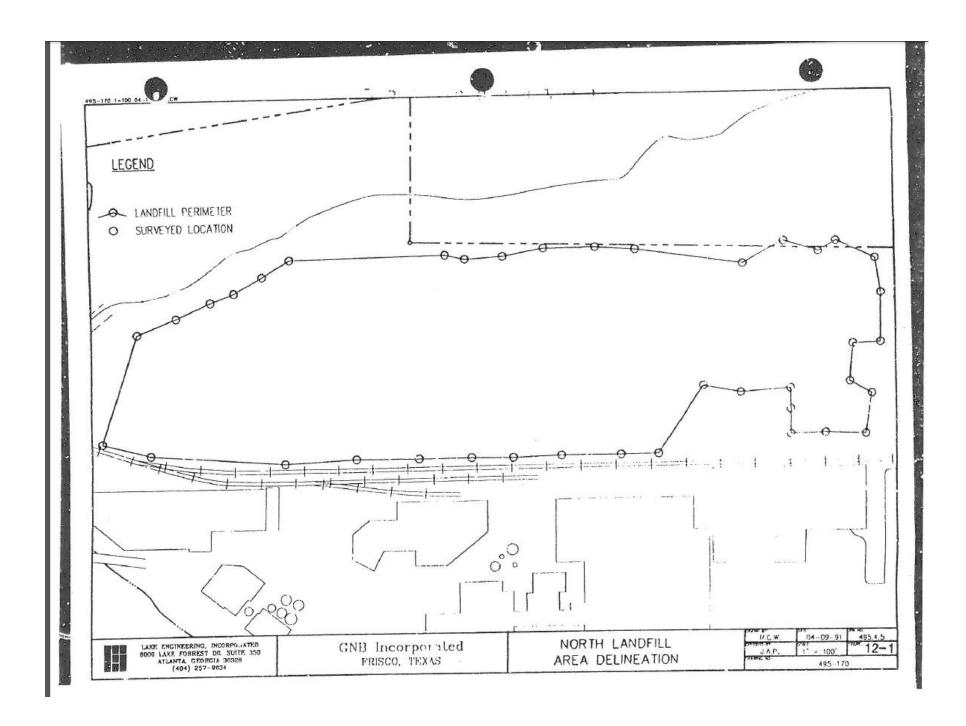
LAKE ENGINEERING, INC, 6000 Lake Forrest Drive Suite 350 Atlanta, Georgia 30328

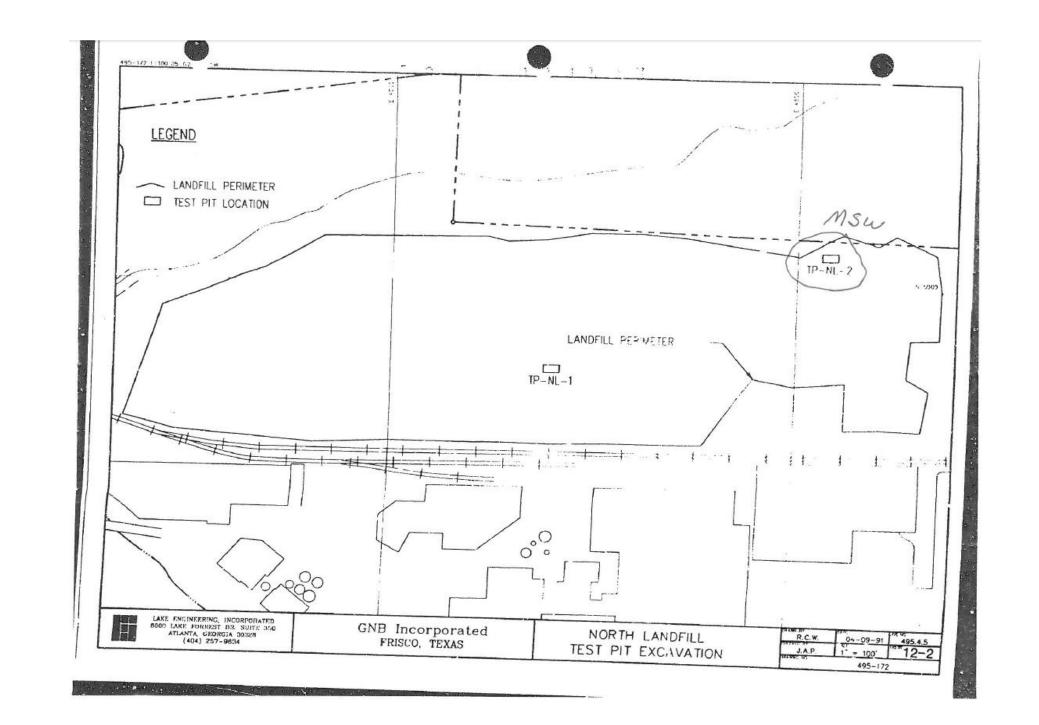
495.4.5

12.0 LANDFILL DELINEATIONS

Aerial photographs and interviews " a current emp! yees served as a reference in estimating the boundaries of the north and south and." The exact boun lary locations were determined using a drill rig mounted solid-stem auger. Auger holes were made around the estimated boundary to ascertain the exact location of the edge of the fill. Holes were placed at the estimated edge. If landfill material was encountered additional holes were augured one to three feet apart away from the center of the landfill until clean material was encountered. If the initial hole was clean, additional holes were augured one to three feet apart toward the center of the landfill until landfill material was encountered. The traverses of holes were spaced from 25 to 100 feet apart based on the estimated configuration of each landfill. A visual inspection of the material encountered and the resistance to penetration were used to determine whether or not the landfill boundary had been encountered. All boreholes were grouted to the surface following the delineation.

The depths of the landfill disposal areas were determined by trenching in the center of the North and South areas. The trenching was conducted using a backhoe. Two trenches were excavated in the North area and one trench in the South area. Following the determination of depth, the trenches were backfilled and compacted. The depth of the active slag fill was determined from pre-existing ground level contours versus current elevations.


During the determination of the boundaries of the landfills, an inspection was made to ascertain the construction of the covers on the landfills and their condition. This determination was conducted using visual inspection of the auger holes and trenches.


12.1 North Landfill

During the north landfill delineation, 64 auger holes were drilled using a mobile drilling rig. Based on the 64 holes drilled, 47 delineation points were located to describe the extent of the landfill. To determine the condition of the landfill cap and determine the depth of the landfilled material, two test pits were dug. The results of the delineation and test pits are described below.

12.1.1 Delineation

The location of horizontal extent of the north landfill is shown in Figure 12-1. The landfill encompasses approximately 5.2 acres.

During the course of the delineation several pockets of slag, construction debris, and normal household and industrial trash was encountered. The pockets of slag were located on the western and southern side of the landfall adjacent to the railroad spur. Construction debris, household, and industrial trush were observed on the northern and eastern portion of the landfill.

The landfilled materials were covered with one to three feet of compacted city. The cap was vegetated with no signs of cap gullying. However, thinning of the cap was visible in some areas.

12.1.2 Test Pit

The location of the two test pits excavated during this phase of the investigation are shown in Figure 12-2. One test pit was dug into the old solid waste landfill (TP-NL-1) and one in the old trash landfill (TP-NL-2). The cap cover at TP-NL-1 was approximately two feet of compacted soil. The contents of the pit included blast furnace slag and construction debris. The depth of the landfill was 20 feet. The cap cover of TP-NL-2 was approximately one foot thick, composed of compacted clay. The contents of this test pit included household garbage. There was no indication that facility placess solid waste was disposed of at this location. The contents of the borings and test pits coincide with information gathered from conversations with plant employees. The depth of this section of the landfill was approximately 10 feet.

12.2 South Landfill

During the south landfill delineation, 30 auger holes were drilled using a mobile drilling rig. From the 30 holes drilled, 22 delineation points were located to describe the extent of the landfill. To determine the condition of the landfill cap and determine the depth of the landfilled materia', a test pit was excavated using a backhoe. The results of this phase of the investigation are described below.

12.2.1 Delineation

The location of horizontal extent of the south landfill is shown in Figure 12-3. The landfill encompasses approximately 0.9 acres.

Dur. delineation, blast furnace slag and hard rubber chips were encountered. The slag was typically encountered one-half to two feet below the surface. The landfill cap was constructed with compacted clay. Vegetation covered the cap and there was no sign of erosion.